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Abstract By using Hamilton-Jacobi-Bellman equation with complex time, we investigate
quantum theory in timelike curve. State vectors of a physical system in the two-dimensional
timelike curve not only obey Schrödinger equation in the observed timespace but also in-
volve random motion in the traversal timespace. The random motion with hidden variables
is successfully to explain why the wave function is a probability wave. Quantum measure-
ment are discussed in present work. The results are in agreement with the conventional
interpretation of quantum theory.
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1 Introduction

Quantum theory is one of the great physical theories of the 20th century. Quantum mechan-
ics has not only profoundly advanced our understanding of nature but has also provided
the basis of numerous technologies. Most significantly, quantum mechanics changed our
view of the world in a way that was completely surprising and had unprecedented depth.
To this date, all experiments magnificently confirm all quantum predictions with impressive
precision. However, some fundamental enigmas of quantum theory remain unresolved.

What was the wave function described by the Schrödinger equation and why was the
probability wave? This central puzzle of quantum mechanics remains a potential and con-
troversial issue up to now.

Born [1] proposed that the wave function should be interpreted in terms of probabilities.
When the location of a microscopic object, such as photon, electron, neutron, proton and
atom, was observed by experimenters, the probability of finding it in each region depends
on the magnitude of its wave function there. The act of observing the quantum superposi-
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tions, however, triggers an abrupt change in its wave function, commonly called a collapse.1

Measured question for the quantum superposition lies at the heart of quantum mechanics
and gives rise to many of its paradoxes.

This interpretation was called as the Copenhagen interpretation, which suggested that a
fundamental randomness was built into the laws of nature. This assumption has been the
object of severe criticism, notably on the part of Einstein [2], who has always believed that,
even at the quantum level, there must exist precisely definable elements or dynamical vari-
ables determining the actual behavior of each individual system, and not merely its probable
behavior.

The Copenhagen interpretation provided a strikingly successful recipe for doing calcula-
tions that accurately described the outcomes of experiments, but the suspicion lingered that
some equation ought to describe when and how this collapse occurred.

Instead of being collapsed by measurements, Everett [3] assumed that all measurement
results coexist in split universes, where microscopic superpositions would rapidly get am-
plified into byzantine macroscopic superpositions. In Everett’s scenario, that wave function
would always evolve in a deterministic way, leaving no room for mysterious nonunitary
collapse or God playing dice. Evertt’s viewpoint, formally called the relative-state formu-
lation, became popularly known as the many-words interpretation perceives its own word.
This viewpoint simplifies the underlying theory by removing the collapse postulate. But the
price it pays for this simplicity is in the conclusion that these parallel perceptions of reality
are equally real.

The experimental progress [4, 5] of the past few decades was paralleled by great advances
in theoretical understanding. Evertt’s work had left two crucial questions unanswered. If the
word actually contains bizarre macroscopic superpositions, why don’t we perceive them?

Bohm tried to replace the seeming quantum randomness by some kind of unknown quan-
tity carried about inside particles-so-called hidden variables, where particles actually have
fixed positions and momenta at all times but move in a quantum potentials in terms of a
consequence of the Schrödinger equation [6–9]. John S. Bell [10] showed that in this case
quantities that could be measured in certain difficult experiments would inevitably disagree
with the standard quantum predictions. After many years, technology allowed researchers to
conduct the experiments and to eliminate Bohm’s hidden variables as a possibility [11, 12],
where a photon in two places was observed at once.

At present work, we reinvestigate the Schrödinger equation and collapse of the wave
function. The aim is not to deny or contradict the conventional formulation of quantum the-
ory, but wants to understand how a fundamental randomness is built into the laws of nature.
By suppling a new, more general and complete formulation, the conventional interpretation
of the quantum theory can be deduced.

2 Schrödinger Equation

According to Louis de Broglie [13] matter wave, a physical system is completely described
by a state function ψ of the system on an appropriate configuration space in quantum theory.
It is known that the wave function of the physical system can be expressed as

ψ = R(x, t) exp(iS(x, t)/�), (1)

1Essays 1958–1962 on Atomic Physics and Human Knowledge (1963), p. 56.
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where R(x, t) is related to the amplitude of the wave function and S(x, t) is a classical
action of the system, both being real.

In terms of geometrical optics, there corresponds on the optical side the light ray for the
path of the representative point in configuration space. Therefore, the Hamiltonian analogy
of mechanics to optics is an analogy to geometric optics. Hamilton’s variational principle can
be shown to correspond to Fermat’s principle for a wave propagation in configuration space,
and the Hamilton-Jacobi equation expresses Huygens’ principle for this wave propagation.
Therefore, Schrödinger thought that a wave equation should be deduced by the Hamilton-
Jacobi equation [14–16].

Let’s start from Hamilton-Jacobi differential equation,

∂S

∂t
+ 1

2m
(∇S)2 + V = 0. (2)

In the Schrödinger original paper, R(x, t) is regarded as a constant [14–16]. Thus, we
have

∂ψ

∂t
= i

�

∂S

∂t
ψ, ∇ψ = i

�
∇Sψ. (3)

From (3), one finds

∂S

∂t
= −i�

1

ψ

∂ψ

∂t
, ∇S = −i�

1

ψ
∇ψ. (4)

Inserting (4) into (2), the Hamilton-Jacobi equation becomes

∂S

∂t
+ 1

2m
(∇S) (∇S)+ + V = −i�

1

ψ

∂ψ

∂t
+ �

2

2m

1

ψψ+ ∇ψ∇ψ+ + V = 0, (5)

where ∇S = (∇S)+ is used because S is real.
According to (5), we take a Lagrangian density of the physical system as

L = −i�ψ+ ∂ψ

∂t
+ �

2

2m
∇ψ∇ψ+ + V ψψ+, (6)

and the solution of the Hamilton variational problem to (6) may be written as

i�
∂ψ

∂t
=

[
− �

2

2m
∇2 + V

]
ψ. (7)

The Schrödinger equation is readily verified that the R(x, t) and S(x, t) satisfy

∂R

∂t
= − 1

2m
[R∇2S + 2∇R · ∇S], (8)

which describes conservation of probability for the physical system, and

∂S

∂t
= −

[
(∇S)2

2m
+ V (x) − �

2

2m

∇2R

R

]
(9)

which implies that motion of particle is determined not only from classical potential, such
as V (x), but also from additional term �

2

2m
∇2R
R

called as the quantum potential by Bohm
[6, 7]. R(x, t) is determined in terms of the action S(x, t) by the differential equation (8).
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If R(x, t) was constant, ∇2S in (8) and the quantum potential in (9) would disappear.
However, the Schrödinger equations (7)–(9) with probability interpretation is in excellent
agreement with an extremely wide range of experiments. Therefore, there exists a paradox,
on one hand, no experimental evidence is known which contradicts the Schrödinger equa-
tion, on the other hand, the equation was deduced by a special case. An alternative way of
deducing the Schrödinger equation by the path integral [17] has only a complex phase, the
action functional.

3 Quantum Theory in Timelike Curve

Supposed that R = R(x, t) is not a constant, (3) becomes

∂ψ

∂t
= i

�

∂S

∂t
ψ + ∂R

∂t
eiS/�, ∇ψ = i

�
∇Sψ + ∇ReiS/�. (10)

Thus, we have

∂S

∂t
= −i�

1

ψ

∂ψ

∂t
+ i�

1

R

∂R

∂t
, ∇S = −i�

1

ψ
∇ψ + i�

1

R
∇R. (11)

Inserting (11) into (2), one finds

∂S

∂t
+ 1

2m
(∇S) (∇S)+ + V = −i�

1

ψ

∂ψ

∂t
+ �

2

2m

1

ψψ+ ∇ψ∇ψ+ + V

+i�
1

R

∂R

∂t
− �

2

2m

1

R2
(∇R)2 = 0. (12)

Similarly, the Lagrangian density of the physical system is given by

L = −i�ψ+ ∂ψ

∂t
+ �

2

2m
∇ψ∇ψ+ + V ψψ+ + i�R

∂R

∂t
− �

2

2m
(∇R)2, (13)

in terms of (12). If we take both ψ and R as independent variables, the variational solution
with the boundaries δψ+ = δψ = δR = 0 to (13) is given by

i�
∂ψ

∂t
=

[
− �

2

2m
∇2 + V

]
ψ, ∇2R = 0. (14)

The Schrödinger equation does, obviously, not satisfy the condition ∇2R = 0 for a quan-
tum wave function because of the Hamilton-Jacobi-Bohm equation (9).

In fact, ψ and R are dependent. Equation (12) should be regarded as a equation of motion.
Substituting the Schrödinger equation (7) into (12), we have

∂S

∂t
+ 1

2m
(∇S) (∇S)+ + V = 1

ψψ+

(
i�R

∂R

∂t
+ �

2

2m
R∇2R + i�2

2m
R2∇2S + i�

m
R∇R∇S

)

= 0, (15)

which will also give the conservation of probability (8) and condition ∇2R = 0, while it is
not true of the condition ∇2R = 0 for a quantum theory.
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If comparing analytical mechanics with geometrical optics, one can show an identity of
the principle of least action and Fermat principle. Moreover, the quantization of the Hamil-
tonian dynamics of mechanical systems leads to the Heisenberg equation [18]. The idea of
an imaginary time version of Hamilton-Jacobi equation, called Hamilton-Jacobi-Bellman
equation, has been studied for decades. Therefore, it may be a reasonable generalization
that the classical traversal time should be included [19–21].

τ = t + iσ. (16)

Suppose that the Hamilton-Jacobi differential equation for a quantum physical system in the
τ -timespace is satisfied,

∂S

∂τ
+ 1

2m
(∇S)2 + V = 0, (17)

which is called Hamilton-Jacobi-Bellman equation. The action integral in the complex
timespace can be expressed as

Wτ =
∫

ρ(x, τ )

[
∂S

∂τ
+ 1

2m
(∇S)2 + V

]
d3xdτ, (18)

where ρ(x, τ ) is the probability density of the physical system. According to the action
integral, Lagrangian density of the physical system is defined as

L = L
(

ρ,S,
∂S

∂τ
,∇S

)
= ρ

[
∂S

∂τ
+ 1

2m
(∇S)2 + V

]
, (19)

using the Hamilton variational principle with boundaries δρ(x, τ ) = δS(x, τ ) = 0, one finds

δWτ =
∫ (

δL
δρ

δρ + δL
δS

δS + δL
δ ∂S

∂τ

δ
∂S

∂τ
+ δL

δ∇S
· δ∇S

)
d3xdτ

=
∫ (

∂

∂τ

(
δL
δ ∂S

∂τ

δS

)
+ ∇ ·

(
δL

δ∇S
δS

))
d3xdτ

+
∫ (

δL
δρ

δρ +
(

δL
δS

− ∂

∂τ

δL
δ ∂S

∂τ

− ∇ · δL
δ∇S

)
δS

)
d3xdτ = 0. (20)

The first term in (20) vanishes because of the boundary conditions, the second term gives
out the following two equations,

δL
δρ

= 0, (21)

and

δL
δS

− ∂

∂τ

δL
δ ∂S

∂τ

− ∇ · δL
δ∇S

= 0. (22)

Using (19), we find that (21) will lead to the Hamilton-Jacobi-Bellman equation (17) and
(22) will give out the conservation of the probability,

∂ρ

∂τ
+ 1

m
∇ · (ρ∇S) = 0, (23)
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where ρ and j = 1
m
(ρ∇S) are sometimes referred to as the probability and probability cur-

rent density in the τ -timespace, respectively. The current density j is the spatial variation of
the action of the physical system that determines the strength of the current. The move the
action varies with distance, the greater the current.

Note that (23) is also a conservation law expressing the fact that a change in the particle
density in a region of space is compensated for a net change in flux into that region in the
complex τ -timespace.

It is in general correction in between the real t -timespace and the imaginary σ -timespace.
Therefore, there exists the exchange of the current between the two timespace. Thus, matter
creation or destruction would tale place in the observed t -timespace. It is impossible for
nonrelativistic quantum theory. However, when there doesn’t any interaction between the
two timespace, (23) will be decomposed into two independent equation according to the real
part and the imaginary part. In this case, the conservation of matter is kept in the observed
t -timespace.

In order to check if there exists the correction between the two timespace, we consider
the action integral in terms of the two-dimensional liketime curve, such as

W(t,σ ) =
∫

ρ(x, t, σ )

[
∂S

∂τ
+ 1

2m
(∇S)2 + V

]
d3xdtdσ

=
∫

d3xdtdσ

[
−i�ψ+ ∂ψ

∂t
+ �

2

2m
∇ψ∇ψ+ + V ψψ+

+ i�R
∂R

∂t
− iR2 ∂S

∂σ
− �

2

2m
(∇R)2

]
. (24)

It should be noted if ψ and ψ+ are regarded as the independent variables, R and S are
not the independent invariables. Using the Hamilton variational principle with boundaries
δψ = δψ+ = 0, one can obtain the Schrödinger equation,

i�
∂ψ

∂t
=

[
− �

2

2m
∇2 + V

]
ψ. (25)

It is noted that (25) can only describe evaluation of the wave function in the t -timespace. In
the following, we try to give some information in the σ -timespace.

Inserting (25) into (17), one finds

∂S

∂τ
+ 1

2m
(∇S)2 + V = 1

|ψ |2
(

−iR2 ∂S

∂σ
− �R

∂R

∂σ
+ �

2

2m
R∇2R

)
= 0, (26)

where the conservation of the probability (23) is used. Thus, the real and imaginary parts of
(26) give out the following two equations in the σ -timespace,

∂S(t, σ )

∂σ
= 0, (27)

which means that the state vector of the physical system allows an arbitrary phase factor
without relating to σ variable, and

∂R(t, σ )

∂σ
= �

2m
∇2R(t, σ ). (28)
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Equations (27) and (28), from the Hamilton-Jacobi-Bellman equation (17) and the conser-
vation of the probability (23), make W(t,τ) be the action integral in the two-dimensional
timespace.

For t -timespace, we find

∂S

∂t
+ 1

2m
(∇S) (∇S)+ + V = 1

|ψ |2
(

i�R
∂R

∂t
+ i�2

2m
R2∇2S + i�

m
R∇R∇S

)

+ �
2

2m

∇2R

R
. (29)

It is shown in (29) that the imaginary part is only the probability conservation (8), while
the real part is the Hamilton-Jacobi-Bohm equation (9). Now, the paradox occur anyway
in coordinates of the two-dimensional timelike curves. The wave functions deed satisfy the
Schrödinger equation (25) without any confinement in the t -timespace measured by the
experimenters. Moreover, they also involve in a random motion described by (27) and (28)
in the σ -timespace with hidden variables.

Quantum field theory in the timelike curves has many examples such as the Casimir effect
where the expectation value of the energy-momentum tensor fail to obey the weak energy
condition [26, 27]. The suggested time asymmetry is useful to explain why in the beginning
the universe was so uniform, as evinced by the microwave background radiation left over
from the big bang, whereas the end of the universe must be messy.

The imaginary time may be ascribed with the physical notion of the signal velocity of
a truncated wave packet [28] and is of importance for dynamic tunneling events. In recent
years, the imaginary time is used to study baryon and lepton number violation processes in
collision experiments in the TeV range [29–31]. This process is associated with the tunneling
between topologically different vacua in the standard electroweak model through the baryon
and lepton number anomaly.

4 Interpretation of Probability Wave

Equation (25) and (27)–(28) show that there doesn’t exist any interaction of coupling term
between the t - and σ -timespace. In the following, therefore, we will denote St and Sσ as
phases of wave functions in the t - and the σ -timespace respectively. Similarly, Rt and Rσ

are amplitudes of wave functions in the t - and the σ -timespace respectively.
Equations (27) and (28) are diffusion equations, the relevant solutions may be expressed

as

Sσ (ξ − x) = χ(ξ − x), (30)

where χ is an arbitrary function, and

Rσ (ξ − x) = 1

(4πDσ)3/2
e− (ξ−x)2

4Dσ , D = �/2m, (31)

where D is a diffusion coefficient. In the Nelson’s stochastic theory, the diffusion coefficient
D = �/2m was supposed to derive the Schrödinger equation [22, 23].

It is noted that limσ→0 Rσ (ξ − x) = δ(ξ − x). Therefore, ξ is a random variable rep-
resented by the position x(t, σ ). The diffusion process, which is strongly irreversible, is
related to a random motion of the Brownian particles.



1866 Int J Theor Phys (2009) 48: 1859–1871

If setting ki = (ξ − x)i/Li and ni = 2σD/L2
i (i = 1,2,3), where Li is the mean free

path along x, y and z axes respectively; and using the following relation,

lim
x→0

(1 − x)1/x = e−1 = lim
x→0

(1 + x)−1/x, (32)

one finds

exp

(
−2

(ξ − x)2

4Dσ

)
= exp

(
− (ξ − x)2

L2

L2

2Dσ

)
= exp(−k2/n)

�
[(

1 + k

n

)−n/k]k2/2n[(
1 − k

n

)n/k]k2/2n

=
(

1 + k

n

)−k/2(
1 − k

n

)k/2

= nn( 1
2 )n

[ 1
2 (n + k)](n+k)/2[ 1

2 (n − k)](n−k)/2
. (33)

Thus,

R2
σ (ξ − x)d3ξ = 1

(4πDσ)3
e−2 (ξ−x)2

4Dσ d3(ξ − x)

= 1√
4πDσ

e− (ξ−x)21
4Dσ d

(ξ − x)1√
4πDσ

× 1√
4πDσ

e− (ξ−x)22
4Dσ d

(ξ − x)2√
4πDσ

× 1√
4πDσ

e− (ξ−x)23
4Dσ d

(ξ − x)3√
4πDσ

� n1!
[ (n+k)1

2 ]![ (n−k)1
2 ]!

(
1

2

)n1

(�k1/
√

n1)

× n2!
[ (n+k)2

2 ]![ (n−k)2
2 ]!

(
1

2

)n2

(�k2/
√

n2)

× n3!
[ (n+k)3

2 ]![ (n−k)3
2 ]!

(
1

2

)n3

(�k3/
√

n3), (34)

where the following approximation is used,

n! � (2πn)1/2

(
n

e

)n

. (35)

Equation (34) is a probability to take ki = (ξ − x)i/Li (i = 1,2,3 represent x, y, z

axes respectively) more jumps in the positive direction after ni = 2σD/L2
i jumps in

3-dimensional ensemble.
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Taking t and σ as independent variables, the state vector of the physical system may be
expressed as

�(ξ,σ, x, t) = Rσ (ξ − x) exp(iχ(ξ − x)/�)ψ(x, t)

= Rσ (ξ − x)Rt (x, t)ei(St (x,t)+χ(ξ−x))/�, (36)

where ψ(x, t) = Rt(x, t) exp(iSt (x, t)/�) is determined by the Schrödinger equation (25),
while Rσ (ξ − x) exp(iχ(ξ − x)/�) satisfies (27) and (28). Because R2

σ is joint probability
distributions in terms of (34) explained as the random motion, � is a probability wave with
probability in the observed timespace,

ρ(t, x) =
∫

d3ξ |�(ξ,σ, x, t)|2∫
d3ξd3x|�(ξ,σ, x, t)|2

=
∫

d3ξ |Rσ (ξ − x)Rt(x, t)ei(St (x,t)+χ(ξ−x))/�|2∫
d3ξd3x|Rσ (ξ − x)Rt(x, t)ei(St (x,t)+χ(ξ−x))/�|2

= |Rt(x, t)|2∫
d3x|Rt(x, t)|2 , (37)

which is exactly the same with the conventional probability described by the Schrödinger
equation. Equation (37) shows that for observations which may be reduced to position mea-
surements, the two wave functions, � and ψ , give the same predictions. A physical system is
completely described by a state function ψ in terms of the t -timespace, which is an element
of a Hilbert space, and which furthermore gives informations about probability distributions
in terms of the σ -timespace.

The random distribution R2
σ d3ξ is independent of the ψ field and dependent only on our

degree of information concerning the location of the particle because of limσ→0 Rσ (ξ −x) ∼
δ(ξ − x), which may be an appropriate interpretation for a causal theory of the quantum
mechanics [24, 25].

5 Many Particle System

Similarly, the extension to an arbitrary number of particles is straightforward, and we shall
quote only the results here. The Schrödinger equation for N -particle system with the coor-
dinates xi (i = 1, . . . ,N) may be given by

i�
∂

∂t
ψ(x1, x2, . . . , xN , t) =

[
−

N∑
i=1

�
2

2mi

∇2
i + V (x1, x2, . . . , xN , t)

]
ψ(x1, x2, . . . , xN , t),

(38)

the wave function also involves additional random motion in the σ -timespace, such as

∂

∂σ
Rσ (x1, x2, . . . , xN) =

N∑
i=1

�

2mi

∇2
i Rσ (x1, x2, . . . , xN), (39)

∂

∂σ
Sσ (x1, x2, . . . , xN) = 0. (40)
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The above equations are simply a 3N -dimensional generalization of the similar three-
dimensional equations (25) and (27)–(28).

The solution of the differential equations (40) and (41) will in general lead to multiple-
valued function, such as

Rσ (ξ1, . . . , ξN ;x1, . . . , xN) =
N∏

i=1

1

(4πDiσ)3/2
e

− (ξi−xi )
2

4Diσ , (41)

Sσ (ξ1 − x1, . . . , ξN − xN) = χ(ξ1 − x1, . . . , ξ1 − xN), (42)

where Di = �/2mi is a diffusion coefficient for i-th particle, the correspondent ξi is a ran-
dom variable represented by the position xi(t, σ ). Therefore, the wave function described
the behavior of every particle in the many particle system,

�(ξ1, . . . , ξN , σ, x1; . . . , xN , t)

= Rσ (ξ1, . . . , ξN ;x1, . . . , xN)Rt (x1, . . . , xN , t)

× exp[i(St (x1, . . . , xN , t) + χ(ξ1 − x1, . . . , ξN − xN))/�], (43)

may obviously be explained as the probability wave with probability,

ρ(t, x1, . . . , xN) =
∏N

i=1

∫
d3ξi |�(ξ1, . . . , ξN , σ, x1, . . . , xN , t)|2∏N

i=1

∫
d3ξi

∫
d3xi |�(ξ1, . . . , ξN , σ, x1, . . . , xN , t)|2

=
∏N

i=1

∫
d3ξi |Rσ Rte

i(St+χ)/�|2∏N

i=1

∫
d3ξi

∫
d3xi |Rσ Rtei(St+χ)/�|2

= |Rt(x1, . . . , xN , t)|2∏N

i=1

∫
d3xi |Rt(x1, . . . , xN , t)|2 . (44)

The wave amplitude, R2
σ (ξ1, . . . , ξN ;x1, . . . , xN)R2

t (x1, . . . , xN , t), has two interpreta-
tions. First, it defines a probability distribution in terms of (44), which explains why a proba-
bility wave is in terms of the hidden variables ξ and σ . Secondly, R2

t (x1, . . . , xN , t) described
by the Schrödinger equation is equal to the density of representative points (x1, . . . , xN) in
our 3N -dimensional ensemble.

6 Quantum Measurement

For any interpretation it is necessary to put the mathematical model of the theory into corre-
spondence with experience. For this purpose, Let’s consider the question about live quantum
cat. This is one possible outcome of Schrödinger’s famous thought experiment, in which a
radioactive substance, on emitting a particle, would trigger the release of lethal poison. The
problem posed by the experiment is to reconcile the two following facts. The first is that,
empirically, cats invariably appear to us either alive or dead. The second is that the con-
ventional Schrödinger equations of motion seem to predict that cats can be in an almost
unimaginably bizarre state in which they are neither alive nor dead.

Imagine that we prepare a Schrödinger cat state, the wave functions may be expressed as

|cat〉 = a
|�1〉

|〈�1|�1〉|1/2
+ b

|�2〉
|〈�2|�2〉|1/2

, (45)
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where �1 and �2 are two different states in a superposition,

|�1〉 = Rσ (ξ1 − x) exp(iχ1(ξ − x)/�)ψ1(x, t)

= Rσ (ξ1 − x)Rt1(x, t) exp[i(St1(x, t) + χ1(ξ − x))/�), (46)

|�2〉 = Rσ (ξ2 − x) exp(iχ2(ξ − x)/�)ψ2(x, t)

= Rσ (ξ2 − x)Rt2(x, t) exp[i(St2(x, t) + χ2(ξ − x))/�]. (47)

For a superposition, ξ1 	= ξ2, setting ξ1 = ξ + c and ξ2 = ξ − c, one finds

|〈�1|�2〉|2
|〈�1|�1〉||〈�2|�2〉| = | ∫ d3ξRσ (ξ1 − x)Rσ (ξ2 − x)〈ψ1|ψ2〉|2∫

d3ξR2
σ (ξ − x)

∫
d3ηR2

σ (η − x)|〈ψ1|ψ1〉||〈ψ2|ψ2〉|

= e− c2
Dσ

|〈ψ1|ψ2〉|2
|〈ψ1|ψ1〉||〈ψ2|ψ2〉| . (48)

When C2/Dσ 
 1, one finds

|〈�1|�2〉|2 ∼ 0. (49)

Thus,

〈cat |cat〉 = |a|2 + |b|2 + e− c2
2Dσ a∗b

〈ψ1|ψ2〉
|〈ψ1|ψ1〉|1/2|〈ψ2|ψ2〉|1/2

+ e− c2
2Dσ ab∗ 〈ψ2|ψ1〉

|〈ψ1|ψ1〉|1/2|〈ψ2|ψ2〉|1/2

∼ |a|2 + |b|2. (50)

This way of decoherence offers an explanation for superselection rules. Our solution to
the problem is not recourse to any special role for observers and measured apparatus. The
discontinuous jump into an eigenstate is only dependent upon the hidden variables, ξ and σ ,
insight the wave function.

If a system is observed only in states |ψ1〉 and |ψ2〉, but never in a superposition, then we
know that ξ1 = ξ2 = ξ in this case. Thus

|�〉 = a
|�1〉

|〈�1|�1〉|1/2
+ b

|�2〉
|〈�2|�2〉|1/2

, (51)

one finds

|〈�1|�2〉|2
|〈�1|�1〉||〈�2|�2〉| = | ∫ d3ξRσ (ξ − x)Rσ (ξ − x)〈ψ1|ψ2〉|2∫

d3ξR2
σ (ξ − x)

∫
d3ηR2

σ (η − x)|〈ψ1|ψ1〉||〈ψ2|ψ2〉|

=
| 1
(4πDσ)3

∫
d3ξe− (ξ−x)2

2Dσ |〈ψ1|ψ2〉|2∫
d3ξR2

σ (ξ − x)
∫

d3ηR2
σ (η − x)|〈ψ1|ψ1〉||〈ψ2|ψ2〉|

= |〈ψ1|ψ2〉|2
|〈ψ1|ψ1〉||〈ψ2|ψ2〉| . (52)
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From (46) and (47), we have

〈�|�〉 = |a|2 + |b|2 + a∗b
|〈ψ1|ψ2〉|

|〈ψ1|ψ1〉|1/2|〈ψ2|ψ2〉|1/2

+ ab∗ |〈ψ2|ψ1〉|2
|〈ψ1|ψ1〉|1/2|〈ψ2|ψ2〉|1/2

. (53)

In total, our measurement is the square amplitude measure of the wave function deter-
mined by the Schrödinger equation in the real t -timespace. The continuous change of state
vector of a physical system with the real timespace observed by experimenters is determined
by the Schrödinger equation.

The discontinuous jump is brought about by the observation of a quantity with eigenvec-
tors of the Schrödinger equation, such as |ψ1〉, |ψ2〉, . . . , in which the state vector |ψ〉 will
changed into the state |ψ〉 = ∑

i ci |ψi〉 with probability |〈ψi |ψ〉|2 = c2
i .

7 Conclusion

In conclusion, our theory states that a fundamental randomness is introduced into the wave
function in terms of the hidden variables. Once the probability distribution is set up in a
statistical ensemble of quantum-mechanical systems, then the results predicted for all the
measurement processes will precisely be the same in the causal interpretation as in the usual
interpretation.

In terms of coordinates of the timelike curves, the wave functions described by the
motions of the microscopic objects not only obey the Schrödinger equation in the real t -
timespace but also involve additional random motion permitting a detailed causal and contin-
uous description of all processes in the imaginary σ -timespace. This may be reason why the
state vector of the physical system is a probability wave. Furthermore, in the complex time
coordinate τ = t + iσ , the wave functions are solutions of the Hamilton-Jacobi-Bellman
equation and the conservation of probability. Thus, it is shown that why microscopic sys-
tems seem to posses their familiar classical properties in the experimental measurement.

It is needed to emphasize that our hidden variable theory is different from Bohm’s one
[6, 7], where the microscopic object have a fixed position and momentum at all time. The
experiments seem to reject the interpretation, where a photon in two places at the same time
was observed [11, 12]. Our random distribution, R2

σ d3ξ , is independent of the ψ field de-
scribed by the Schrödinger equation. Therefore, a microscopic object may exist in different
places at the same time. In contrast to the many world interpretation, our interpretation about
the quantum measurement is independent of any measured equipments and environmental
effects.

In the Nelson’s stochastic theory, on the other hand, the Schrödinger equation is deduced
by presuming the diffusion coefficient D = �/2m. In present work, D is directly from the
Hamilton-Jacobi-Bellman equation. It doesn’t include, especially, to explain paradoxes of
the quantum measurement.
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